-6k^2+7k+8=0

Simple and best practice solution for -6k^2+7k+8=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -6k^2+7k+8=0 equation:


Simplifying
-6k2 + 7k + 8 = 0

Reorder the terms:
8 + 7k + -6k2 = 0

Solving
8 + 7k + -6k2 = 0

Solving for variable 'k'.

Begin completing the square.  Divide all terms by
-6 the coefficient of the squared term: 

Divide each side by '-6'.
-1.333333333 + -1.166666667k + k2 = 0

Move the constant term to the right:

Add '1.333333333' to each side of the equation.
-1.333333333 + -1.166666667k + 1.333333333 + k2 = 0 + 1.333333333

Reorder the terms:
-1.333333333 + 1.333333333 + -1.166666667k + k2 = 0 + 1.333333333

Combine like terms: -1.333333333 + 1.333333333 = 0.000000000
0.000000000 + -1.166666667k + k2 = 0 + 1.333333333
-1.166666667k + k2 = 0 + 1.333333333

Combine like terms: 0 + 1.333333333 = 1.333333333
-1.166666667k + k2 = 1.333333333

The k term is -1.166666667k.  Take half its coefficient (-0.5833333335).
Square it (0.3402777780) and add it to both sides.

Add '0.3402777780' to each side of the equation.
-1.166666667k + 0.3402777780 + k2 = 1.333333333 + 0.3402777780

Reorder the terms:
0.3402777780 + -1.166666667k + k2 = 1.333333333 + 0.3402777780

Combine like terms: 1.333333333 + 0.3402777780 = 1.673611111
0.3402777780 + -1.166666667k + k2 = 1.673611111

Factor a perfect square on the left side:
(k + -0.5833333335)(k + -0.5833333335) = 1.673611111

Calculate the square root of the right side: 1.293681225

Break this problem into two subproblems by setting 
(k + -0.5833333335) equal to 1.293681225 and -1.293681225.

Subproblem 1

k + -0.5833333335 = 1.293681225 Simplifying k + -0.5833333335 = 1.293681225 Reorder the terms: -0.5833333335 + k = 1.293681225 Solving -0.5833333335 + k = 1.293681225 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '0.5833333335' to each side of the equation. -0.5833333335 + 0.5833333335 + k = 1.293681225 + 0.5833333335 Combine like terms: -0.5833333335 + 0.5833333335 = 0.0000000000 0.0000000000 + k = 1.293681225 + 0.5833333335 k = 1.293681225 + 0.5833333335 Combine like terms: 1.293681225 + 0.5833333335 = 1.8770145585 k = 1.8770145585 Simplifying k = 1.8770145585

Subproblem 2

k + -0.5833333335 = -1.293681225 Simplifying k + -0.5833333335 = -1.293681225 Reorder the terms: -0.5833333335 + k = -1.293681225 Solving -0.5833333335 + k = -1.293681225 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '0.5833333335' to each side of the equation. -0.5833333335 + 0.5833333335 + k = -1.293681225 + 0.5833333335 Combine like terms: -0.5833333335 + 0.5833333335 = 0.0000000000 0.0000000000 + k = -1.293681225 + 0.5833333335 k = -1.293681225 + 0.5833333335 Combine like terms: -1.293681225 + 0.5833333335 = -0.7103478915 k = -0.7103478915 Simplifying k = -0.7103478915

Solution

The solution to the problem is based on the solutions from the subproblems. k = {1.8770145585, -0.7103478915}

See similar equations:

| 2x^2=16x-12 | | (2x+3x)=28 | | -16t^2+128t-80=0 | | -9f^2-9f+5=0 | | 12x+17=8x-3 | | 24+3a=6a | | 5(5x)=28 | | -16t^2+128t-8=0 | | 5(2x+3x)=28 | | 80+6w-7w=145 | | X=0.98X+10 | | 3(h+6)=2h+15 | | 25/32=m/18 | | 48-32/4.2 | | 3x-4=2x-21 | | (2z-9)(4-z)=0 | | K/6=8/15 | | t^2-14t-15=0 | | 3x/4-5/3=x/6 | | 13/15=X/35 | | 3x/3-4x/5=2/15 | | 3(2k-5)-7x=4x+20 | | 2(h-4)=h+2 | | 800+16x=720+21 | | 14+y=-11 | | 2/3t-1=3 | | 3x+15=25-4x | | 12=-2n | | (5/8)3.(2/5)2 | | 5b^2-30b+25=0 | | -1/3=2/7x-1/2 | | 139/10 |

Equations solver categories